On Mutually Nearest and Mutually Furthest Points in Reflexive Banach Spaces
نویسندگان
چکیده
منابع مشابه
Porosity of mutually nearest and mutually furthest points in Banach spaces
Let X be a real strictly convex and Kadec Banach space and G a nonempty closed relatively boundedly weakly compact subset of X : Let BðX Þ (resp. KðXÞ) be the family of nonempty bounded closed (resp. compact) subsets of X endowed with the Hausdorff distance and let BGðXÞ denote the closure of the set fAABðX Þ : A-G 1⁄4 |g and KGðX Þ 1⁄4 BGðX Þ-KðXÞ: We introduce the admissible family A of BðX Þ...
متن کاملOn Well-posed Mutually Nearest and Mutually Furthest Point Problems in Banach Spaces
Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let K(X) denote the space of all non-empty compact convex subsets of X endowed with the Hausdorff distance. Moreover, let KG(X) denote the closure of the set {A ∈ K(X) : A∩G = ∅}. We prove that the set of all A ∈ KG(X) (resp. A ∈ K(X)), such that the minimizat...
متن کاملOn Almost Well-posed Mutually Nearest and Mutually Furthest Point Problems
Let G be a nonempty closed (resp. bounded closed) subset in a strongly convex Banach space X. Let BðXÞ denote the space of all nonempty bounded closed subsets of X endowed with the Hausdorff distance and let BGðXÞ denote the closure of the set fA 2 BðXÞ : A \ G 1⁄4 ;g. We prove that E(G) (resp. Eo(G)), the set of all A 2 BGðXÞ (resp. A 2 BðXÞ) such that the minimization (resp. maximization) pro...
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملMutually Compactificable Topological Spaces
Two disjoint topological spaces X , Y are (T2-) mutually compactificable if there exists a compact (T2-) topology on K = X ∪ Y which coincides on X , Y with their original topologies such that the points x ∈ X , y ∈ Y have open disjoint neighborhoods in K . This paper, the first one from a series, contains some initial investigations of the notion. Some key properties are the following: a topol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2000
ISSN: 0021-9045
DOI: 10.1006/jath.1999.3407